先锋绿色资源网正式开通,本站致力于提供合同协议、资格考试、资料文档、学科题库、毕业论文、程序源码等专业资源分享,欢迎大家踊跃投稿!

高一数学必修二核心知识总结归纳

学科题库 ziyuan 6个月前 (11-19) 84次浏览 已收录 0个评论

空间几何

一、立体几何常用公式

S(圆柱全面积)=2πr(r+L);

V(圆柱体积)=Sh;

S(圆锥全面积)=πr(r+L);

V(圆锥体积)=1/3Sh;

S(圆台全面积)=π(r^2+R^2+rL+RL);

V(圆台体积)=1/3[s+S+√(s+S)]h;

S(球面积)=4πR^2;

V(球体积)=4/3πR^3.

二、立体几何常用定理

(1)用一个平面去截一个球,截面是圆面.

(2)球心和截面圆心的连线垂直于截面.

(3)球心到截面的距离 d 与球的半径 R 及截面半径 r 有下面关系:r=√(R^2-d^2).

(4)球面被经过球心的平面载得的圆叫做大圆,被不经过球心的载面截得的圆叫做小圆.

(5)在球面上两点之间连线的最短长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,这个弧长叫做两点间的球面距离.

点、线、面之间的位置关系

一、点、线、面概念与符号

平面α、β、γ,直线 a、b、c,点 A、B、C;

A∈a——点 A 在直线 a 上或直线 a 经过点;

aα——直线 a 在平面α内;

α∩β=a——平面α、β的交线是 a;

α∥β——平面α、β平行;

β⊥γ——平面β与平面γ垂直.

二、点、线、面常用定理

1.异面直线判断定理

过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.

2.线与线平行的判定定理

(1)平行于同一直线的两条直线平行;

(2)垂直于同一平面的两条直线平行;

(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行;

(4)如果两个平行平面同时和第三个平面相交,那么它们的交线平行;

(5)如果一条直线平行于两个相交平面,那么这条直线平行于两个平面的交线.

3.线与线垂直的判定

若一条直线垂直于一个平面,那么这条直线垂直于平面内所有直线.

4.线与面平行的判定

(1)平面外一条直线和平面内一条直线平行,则该直线与此平面平行;

(2)若两个平面平行,则在一个平面内的任何一条直线必平行于另一个平面.

平面解析几何-直线与方程

一、直线与方程概念、符号

1.倾斜角

在平面直角坐标系中,对于一条与 x 轴相交的直线,如果把 x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角,当直线和 x 轴平行或重合时,规定其倾斜角为 0°,因此,倾斜角的取值范围是 0°≤α<180°.

2.斜率

倾斜角不是 90°的直线,它的倾斜角的正切值叫这条直线的斜率,常用 k 表示,即 k=tanα,常用斜率表示倾斜角不等于 90°的直线对于 x 轴的倾斜程度.

3.到角

L1 依逆时针方向旋转到与 L2 重合时所转的角.(L1 到 L2 的角)

4.夹角

L1 和 L2 相交构成的四个角中不大于直角的角叫这两条直线所成的角,简称夹角.(L1 和 L2 的夹角或 L1 和 L2 所成的角)

二、直线与方程常用公式

1.斜率公式

(1)A(m,n),B(p,q),且 m≠p,则 k=(n-q)/(m-p);

(2)若直线 AB 的倾斜角为α,且α≠π/2,则 k=tanα.

2.“到角”及“夹角”公式

设 L1:y=k1x+b1,L2:y=k2x+b2,

(1)当 1+k1k2≠0 时,L1 到 L2 的角为θ,则 tanθ=(k2-k1)/(1+k1k2);

L1 与 L2 的夹角为α,则 tanα=|(k2-k1)/(1+k1k2)|.

(2)当 1+k1k2=0 时,两直线夹角为π/2.

3.点到直线的距离公式

点 P(x0,y0)到∶Ax+By+C=0 的距离∶

d=|Ax0+By0+C|/√(A^2+B^2).

4.平行线间的距离公式

两平行线 Ax+By+C1=0 与 Ax+By+C2=0 之间的距离为:

d=|C1-C2|/√(A^2+B^2).

三、直线与方程常用定理

两直线位置关系的判定与性质定理如下:

(1)当 L1:y=k1x+b1,L2:y=k2x+b2,

平行:k1=k2,且 b1≠b2;

垂直:k1k2=-1;

相交:k1≠k2;

重合:k1=k2,且 b1=b2;

(2)当 L1:A1x+B1y+C1=0,L2:A2x+B2y+C2=0,

平行:A1/A2=B1/B2,且 A1/A2≠C1/C2;

垂直:A1A2+B1B2=0;

相交:A1B2≠A2B1;

重合:A1/A2=B1/B2,且 A1/A2=C1/C2.

圆与方程

一、圆与方程概念、符号

1.曲线的方程、方程的曲线

在平面直角坐标系中,如果某曲线 C(看做适合某种条件的点的集合或轨迹)上的点与一个二元方程 f(x,y)=0 的实数解建立了如下的关系:

①曲线上的点的坐标都是这个方程的解;

②以这个方程的解为坐标的点都是曲线上的点.

那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.

二、圆与方程常用公式

1.圆的标准方程

方程(x-a)+(y-b)=r 是圆心为(a,b),半径为 r 的圆的标准方程.

其中当 a=b=0 时,x+y=r 表示圆心为(0,0),半径为 r 的圆.

2.圆的一般方程

方程 x+y+Dx+Ey+F=0,当 D+E-4F>0 时,称为圆的一般方程,

其中圆心为(-D/2,-E/2),半径 r=1/2√(D+E-4F).

3.圆的参数方程

设 C(a,b),半径为 R,则其参数方程为

x=a+Rcosθ;y=b+Rsinθ(θ为参数,0≤θ<2π).

4.直线与圆的位置关系

设直线 L:Ax+By+C=0,圆 C:(x-a)+(y-b)=r.

圆心 C(a,b)到 L 的距离为

d=|Aa+Bb+C|/√(A^2+B^2),

d>rL 与圆 C 相离;

d=rL 与圆 C 相切;

d
5.圆与圆的位置关系

设圆 C1:(x-a1)+(y-b1)=r,圆 C2:(x-a2)+(y-b2)=R.

设两圆的圆心距为

d=√[(a1-a2)^2+(b1-b2)^2],

d>R+r 两圆外离;

d=R+r 两圆外切;

R-rl
d=R-r 两圆内切;

d
来源:思恩试卷
两圆内含.
与圆 c 相交.


本文网址:https://www.greenziyuan.com/782.html
相关说明:
1、若链接失效或其他因素,请联系邮箱:lanling005@qq.com,信息员会在 24 小时内回复你。
2、本站资源来源于网络公开发表或会员上传,所有资料仅供学习交流。
3、部分资源所收取费用仅用来维系网站服务器运营,性质为用户友情赞助。
4、如侵犯您的权益,欢迎发邮件进行说明,并提供相关证据,工作人员会在 5 个工作日内联系你。
喜欢 (0)

您必须 登录 才能发表评论!